Short Communication CYP3A4 and CYP3A5 Genotypes, Haplotypes, and Risk of Prostate Cancer

نویسندگان

  • Sarah J. Plummer
  • David V. Conti
  • Pamela L. Paris
  • Anthony P. Curran
  • Graham Casey
  • John S. Witte
چکیده

Previous case-only studies have shown that men with the CYP3A4*1B promoter variant are at an increased risk of developing more aggressive forms of prostate cancer. However, no changes in CYP3A4 activity have been found in CYP3A4*1B carriers, suggesting that its association with disease may simply reflect linkage disequilibrium with another functional variant. CYP3A5 is located within 200 kb of CYP3A4, and a variant in CYP3A5 (*1/*3) correlates with function of the CYP3A5 enzyme. In this study, the potential effect of CYP3A4*1B and CYP3A5*1 on prostate cancer risk and aggressiveness were evaluated in a family-based case-control population. The CYP3A4*1B variant was positively associated with prostate cancer among Caucasians with more aggressive disease [odds ratio (OR), 1.91; 95% confidence interval (CI), 1.02–3.57; P 0.04], and inversely associated with risk among Caucasians with less aggressive disease (OR, 0.08; 95% CI, 0.01–0.49; P 0.006) and men with an age of diagnosis <63 (OR, 0.51; 95% CI, 0.26–1.00; P 0.05). The CYP3A5*1 variant was inversely associated with prostate cancer, especially among Caucasians with less aggressive disease (OR, 0.42; 95% CI, 0.22–0.78; P 0.006). As expected based on these genotype-level results, the CYP3A4*1B/CYP3A5*3 haplotype was positively associated with disease (OR, 2.91; 95% CI, 1.36–6.23; P 0.006), and the CYP3A4*1B/CYP3A5*1 haplotype was inversely associated with risk among Caucasians with less aggressive disease (OR, 0.07; 95% CI, 0.01–0.51; P 0.009). These findings suggest that the CYP3A4 and CYP3A5 variants, or other alleles on the haplotypes they help distinguish, are associated with prostate cancer risk and aggressiveness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer.

Previous case-only studies have shown that men with the CYP3A4*1B promoter variant are at an increased risk of developing more aggressive forms of prostate cancer. However, no changes in CYP3A4 activity have been found in CYP3A4*1B carriers, suggesting that its association with disease may simply reflect linkage disequilibrium with another functional variant. CYP3A5 is located within 200 kb of ...

متن کامل

CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer.

The CYP3A genes reside on chromosome 7q21 in a multigene cluster. The enzyme products of CYP3A4 and CYP3A43 are involved in testosterone metabolism. CYP3A4 and CYP3A5 have been associated previously with prostate cancer occurrence and severity. To comprehensively examine the effects of these genes on prostate cancer occurrence and severity, we studied 622 incident prostate cancer cases and 396 ...

متن کامل

Biological interactions of CYP2C19 genotypes with CYP3A4*18, CYP3A5*3, and MDR1-3435 in living donor liver transplantation recipients

BACKGROUND Polymorphisms in CYP2C19 are related to the metabolic oxidation of drugs to varying degrees. The CYP3A4*18, CYP3A5*3, and MDR1-3435 variant alleles are very important, particularly in tacrolimus metabolism in organ transplant rejection. AIM The aim of this study is o explore possible interactions among different CYP2C19 genotypes, namely, between homozygous extensive metabolizers (...

متن کامل

Vanishing biodiversity.

Background: Drug-metabolizing enzymes play a role in chemical carcinogenesis through enzymatic activation of procarcinogens to biologically reactive metabolites. The role of gene polymorphisms of several cytochrome P450 enzymes in digestive cancer risk has been extensively investigated. However, the drug-metabolizing enzymes with the broader substrate specificity, CYP3A4 and CYP3A5, have not be...

متن کامل

Effect of common CYP3A4 and CYP3A5 variants on the pharmacokinetics of the cytochrome P450 3A phenotyping probe midazolam in cancer patients.

PURPOSE To evaluate the effect of naturally occurring variants in genes encoding the cytochrome P450 (CYP) isoforms CYP3A4 and CYP3A5 in patients with cancer receiving midazolam as a phenotyping probe. EXPERIMENTAL DESIGN Five variants in CYP3A4 and CYP3A5 were evaluated in 58 patients (21 women and 37 men) receiving a short i.v. bolus of midazolam (dose, 0.0145 or 0.025 mg/kg). Midazolam con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003